Degenerations of Complex Dynamical Systems Ii: Analytic and Algebraic Stability

نویسنده

  • LAURA DEMARCO
چکیده

We study pairs (f,Γ) consisting of a non-Archimedean rational function f and a finite set of vertices Γ in the Berkovich projective line, under a certain stability hypothesis. We prove that stability can always be attained by enlarging the vertex set Γ. As a byproduct, we deduce that meromorphic maps preserving the fibers of a rationally-fibered complex surface are algebraically stable after a proper modification. The first article in this series examined the limit of the equilibrium measures for a degenerating 1-parameter family of rational functions on the Riemann sphere. Here we construct a convergent countable-state Markov chain that computes the limit measure. A classification of the periodic Fatou components for non-Archimedean rational functions, due to Rivera-Letelier, plays a key role in the proofs of our main theorems. The appendix contains a proof of this classification for all tame rational functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method

Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...

متن کامل

Studies on Nickel(II)-Pyridoxamine-Imidazole Containing Mixed Ligand Complex Systems

The stability constants of species present in the systems Ni(II)-pyridoxamine(pym)(A) and Ni(II)-pyridoxamine(pym)(A)-imidazole containing ligands(B) [B = imidazole(him),  benzimidazole(bim), histamine(hist) and L-histidine(his)] have been determined pH-metrically using the MINIQUAD computer program. The existence of the species NiAH, NiA and NiA2 was proven for the Ni(II)-pym(A)...

متن کامل

Dynamical behavior and synchronization of hyperchaotic complex T-system

In this paper, we introduce a new hyperchaotic complex T-system. This system has complex nonlinear behavior which we study its dynamical properties including invariance, equilibria and their stability, Lyapunov exponents, bifurcation, chaotic behavior and chaotic attractors as well as necessary conditions for this system to generate chaos. We discuss the synchronization with certain and uncerta...

متن کامل

The Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion

In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015